It takes the average reader 2 hours and 22 minutes to read Adding More Phy to the Mac by Michael König
Assuming a reading speed of 250 words per minute. Learn more
Traditional wireless algorithms all too often ignore the special qualities of the wireless medium. In this thesis, we propose new wireless transmission primitives for various applications and evaluate each of them on a wireless sensor network. In particular, we focus on integrating two properties into our primitives: the availability of transmission power control and the capture effect. First, we consider the problems of traffic prioritization and running multiple wireless algorithms in parallel. We propose a technique allowing to simultaneously run multiple algorithms of different priorities, with minimal overhead in terms of bandwidth and latency. This is done by assigning each priority a range of admissible received signal strengths at each node, and employing the capture effect to automatically enable reception of only the strongest incoming signal. The setup is transparent to the algorithms: each appears to have complete access to the network's resources as long as no algorithm of a higher priority wishes to use them. We discuss which properties of the network graph and the wireless hardware are beneficial to our technique. Second, we demonstrate the feasibility of achieving constructive interference using commodity wireless sensor nodes. In contrast to previous work, our technique does not rely on global external events as reference, but instead aims to minimize the errors in clock synchronization and transmission timing. Our evaluation shows that our technique is able to achieve constructive interference in over 30% of cases, even after multiple minutes of sleep. Third, we propose a class of transmission primitives which decouple packets' synchronization headers from their payloads, such that two or more different senders may contribute to a single received packet. We explore 2 applications: 1) enabling reception attempts of very weak packets, e.g., across a network chasm, and 2) the injection of shorter packets into longer ongoing transmissions. We investigate ways to vastly reduce the problems incurred by using a mismatching synchronization header for reception. In practice, we are able to successfully decode up to 30% of cross-chasm packets and up to 70% of injected packets. Fourth, we examine how transmission power control can improve wireless schedules. Based on the classic RAND scheduling algorithm we develop a version employing power control called PowerRAND. The schedules generated by PowerRAND are 20-25% shorter, i.e., achieve a 25-33% higher throughput than RAND. Our practical evaluation shows that these schedules are just as feasible in practice. Further, we discuss how power control provides flexibility to schedules in the face of changing environments.
Adding More Phy to the Mac by Michael König is 138 pages long, and a total of 35,604 words.
This makes it 47% the length of the average book. It also has 44% more words than the average book.
The average oral reading speed is 183 words per minute. This means it takes 3 hours and 14 minutes to read Adding More Phy to the Mac aloud.
Adding More Phy to the Mac is suitable for students ages 10 and up.
Note that there may be other factors that effect this rating besides length that are not factored in on this page. This may include things like complex language or sensitive topics not suitable for students of certain ages.
When deciding what to show young students always use your best judgement and consult a professional.
Adding More Phy to the Mac by Michael König is sold by several retailers and bookshops. However, Read Time works with Amazon to provide an easier way to purchase books.
To buy Adding More Phy to the Mac by Michael König on Amazon click the button below.
Buy Adding More Phy to the Mac on Amazon