It takes the average reader 4 hours and 28 minutes to read Arithmetic Groups and Their Generalizations by Lizhen Ji
Assuming a reading speed of 250 words per minute. Learn more
In one guise or another, many mathematicians are familiar with certain arithmetic groups, such as $\mathbf{Z}$ or $\textrm{SL}(n,\mathbf{Z})$. Yet, many applications of arithmetic groups and many connections to other subjects within mathematics are less well known. Indeed, arithmetic groups admit many natural and important generalizations. The purpose of this expository book is to explain, through some brief and informal comments and extensive references, what arithmetic groups and their generalizations are, why they are important to study, and how they can be understood and applied to many fields, such as analysis, geometry, topology, number theory, representation theory, and algebraic geometry. It is hoped that such an overview will shed a light on the important role played by arithmetic groups in modern mathematics. Titles in this series are co-published with International Press, Cambridge, MA. Table of Contents: Introduction; General comments on references; Examples of basic arithmetic groups; General arithmetic subgroups and locally symmetric spaces; Discrete subgroups of Lie groups and arithmeticity of lattices in Lie groups; Different completions of $\mathbb{Q}$ and $S$-arithmetic groups over number fields; Global fields and $S$-arithmetic groups over function fields; Finiteness properties of arithmetic and $S$-arithmetic groups; Symmetric spaces, Bruhat-Tits buildings and their arithmetic quotients; Compactifications of locally symmetric spaces; Rigidity of locally symmetric spaces; Automorphic forms and automorphic representations for general arithmetic groups; Cohomology of arithmetic groups; $K$-groups of rings of integers and $K$-groups of group rings; Locally homogeneous manifolds and period domains; Non-cofinite discrete groups, geometrically finite groups; Large scale geometry of discrete groups; Tree lattices; Hyperbolic groups; Mapping class groups and outer automorphism groups of free groups; Outer automorphism group of free groups and the outer spaces; References; Index. Review from Mathematical Reviews: ...the author deserves credit for having done the tremendous job of encompassing every aspect of arithmetic groups visible in today's mathematics in a systematic manner; the book should be an important guide for some time to come. (AMSIP/43.)
Arithmetic Groups and Their Generalizations by Lizhen Ji is 259 pages long, and a total of 67,081 words.
This makes it 87% the length of the average book. It also has 82% more words than the average book.
The average oral reading speed is 183 words per minute. This means it takes 6 hours and 6 minutes to read Arithmetic Groups and Their Generalizations aloud.
Arithmetic Groups and Their Generalizations is suitable for students ages 12 and up.
Note that there may be other factors that effect this rating besides length that are not factored in on this page. This may include things like complex language or sensitive topics not suitable for students of certain ages.
When deciding what to show young students always use your best judgement and consult a professional.
Arithmetic Groups and Their Generalizations by Lizhen Ji is sold by several retailers and bookshops. However, Read Time works with Amazon to provide an easier way to purchase books.
To buy Arithmetic Groups and Their Generalizations by Lizhen Ji on Amazon click the button below.
Buy Arithmetic Groups and Their Generalizations on Amazon