It takes the average reader 5 hours and 12 minutes to read Computing in Geographic Information Systems by Narayan Panigrahi
Assuming a reading speed of 250 words per minute. Learn more
Capable of acquiring large volumes of data through sensors deployed in air, land, and sea, and making this information readily available in a continuous time frame, the science of geographical information system (GIS) is rapidly evolving. This popular information system is emerging as a platform for scientific visualization, simulation, and computation of spatio-temporal data. New computing techniques are being researched and implemented to match the increasing capability of modern-day computing platforms and easy availability of spatio-temporal data. This has led to the need for the design, analysis, development, and optimization of new algorithms for extracting spatio-temporal patterns from a large volume of spatial data. Computing in Geographic Information Systems considers the computational aspects, and helps students understand the mathematical principles of GIS. It provides a deeper understanding of the algorithms and mathematical methods inherent in the process of designing and developing GIS functions. It examines the associated scientific computations along with the applications of computational geometry, differential geometry, and affine geometry in processing spatial data. It also covers the mathematical aspects of geodesy, cartography, map projection, spatial interpolation, spatial statistics, and coordinate transformation. The book discusses the principles of bathymetry and generation of electronic navigation charts. The book consists of 12 chapters. Chapters one through four delve into the modeling and preprocessing of spatial data and prepares the spatial data as input to the GIS system. Chapters five through eight describe the various techniques of computing the spatial data using different geometric and statically techniques. Chapters nine through eleven define the technique for image registration computation and measurements of spatial objects and phenomenon. Examines cartographic modeling and map projection Covers the mathematical aspects of different map projections Explores some of the spatial analysis techniques and applications of GIS Introduces the bathymetric principles and systems generated using bathymetric charts Explains concepts of differential geometry, affine geometry, and computational geometry Discusses popular analysis and measurement methods used in GIS This text outlines the key concepts encompassing GIS and spatio-temporal information, and is intended for students, researchers, and professionals engaged in analysis, visualization, and estimation of spatio-temporal events.
Computing in Geographic Information Systems by Narayan Panigrahi is 311 pages long, and a total of 78,061 words.
This makes it 105% the length of the average book. It also has 95% more words than the average book.
The average oral reading speed is 183 words per minute. This means it takes 7 hours and 6 minutes to read Computing in Geographic Information Systems aloud.
Computing in Geographic Information Systems is suitable for students ages 12 and up.
Note that there may be other factors that effect this rating besides length that are not factored in on this page. This may include things like complex language or sensitive topics not suitable for students of certain ages.
When deciding what to show young students always use your best judgement and consult a professional.
Computing in Geographic Information Systems by Narayan Panigrahi is sold by several retailers and bookshops. However, Read Time works with Amazon to provide an easier way to purchase books.
To buy Computing in Geographic Information Systems by Narayan Panigrahi on Amazon click the button below.
Buy Computing in Geographic Information Systems on Amazon