It takes the average reader 7 hours and 35 minutes to read Harmonic Maps by James Eells
Assuming a reading speed of 250 words per minute. Learn more
These original research papers, written during a period of over a quarter of a century, have two main objectives. The first is to lay the foundations of the theory of harmonic maps between Riemannian Manifolds, and the second to establish various existence and regularity theorems as well as the explicit constructions of such maps. Contents:Harmonic Mappings of Riemannian Manifolds (1964)Énergie et Déformations en Géométrie Différentielle (1964)Variational Theory in Fibre Bundles (1965)Restrictions on Harmonic Maps of Surfaces (1976)The Surfaces of Delaunay (1987)Minimal Graphs (1979)On the Construction of Harmonic and Holomorphic Maps between Surfaces (1980)Deformations of Metrics and Associated Harmonic Maps (1981)A Conservation Law for Harmonic Maps (1981)Maps of Minimum Energy (1981)The Existence and Construction of Certain Harmonic Maps (1982)Harmonic Maps from Surfaces to Complex Projective Spaces (1983)Examples of Harmonic Maps from Disks to Hemispheres (1984)Variational Theory in Fibre Bundles: Examples (1983)Constructions Twistorielles des Applications Harmoniques (1983)Removable Singularities of Harmonic Maps (1984)On Equivariant Harmonic Maps (1984)Regularity of Certain Harmonic Maps (1984)Gauss Maps of Surfaces (1984)Minimal Branched Immersions into Three-Manifolds (1985)Twistorial Construction of Harmonic Maps of Surfaces into Four-Manifolds (1985)Certain Variational Principles in Riemannian Geometry (1985)Harmonic Maps and Minimal Surface Coboundaries (1987)Unstable Minimal Surface Coboundaries (1986)Harmonic Maps between Spheres and Ellipsoids (1990)On Representing Homotopy Classes by Harmonic Maps (1991) Readership: Researchers and students in differential geometry and topology and theoretical physicists. keywords:Harmonic Mapping;Energy;Holomorphic Map;First (Second) Variation of Energy;Minimal Immersion;Minimal Graph;Regularity of Maps;Removable Singularities“It is striking that the papers cut a wide swathe through mathematics, and this is a testimony to the fact that the author has influenced so many younger mathematicians, several of whom are represented here.”Mathematical Reviews
Harmonic Maps by James Eells is 452 pages long, and a total of 113,904 words.
This makes it 153% the length of the average book. It also has 139% more words than the average book.
The average oral reading speed is 183 words per minute. This means it takes 10 hours and 22 minutes to read Harmonic Maps aloud.
Harmonic Maps is suitable for students ages 12 and up.
Note that there may be other factors that effect this rating besides length that are not factored in on this page. This may include things like complex language or sensitive topics not suitable for students of certain ages.
When deciding what to show young students always use your best judgement and consult a professional.
Harmonic Maps by James Eells is sold by several retailers and bookshops. However, Read Time works with Amazon to provide an easier way to purchase books.
To buy Harmonic Maps by James Eells on Amazon click the button below.
Buy Harmonic Maps on Amazon