It takes the average reader 4 hours and 44 minutes to read Learning to Rank for Information Retrieval by Tie-Yan Liu
Assuming a reading speed of 250 words per minute. Learn more
Due to the fast growth of the Web and the difficulties in finding desired information, efficient and effective information retrieval systems have become more important than ever, and the search engine has become an essential tool for many people. The ranker, a central component in every search engine, is responsible for the matching between processed queries and indexed documents. Because of its central role, great attention has been paid to the research and development of ranking technologies. In addition, ranking is also pivotal for many other information retrieval applications, such as collaborative filtering, definition ranking, question answering, multimedia retrieval, text summarization, and online advertisement. Leveraging machine learning technologies in the ranking process has led to innovative and more effective ranking models, and eventually to a completely new research area called “learning to rank”. Liu first gives a comprehensive review of the major approaches to learning to rank. For each approach he presents the basic framework, with example algorithms, and he discusses its advantages and disadvantages. He continues with some recent advances in learning to rank that cannot be simply categorized into the three major approaches – these include relational ranking, query-dependent ranking, transfer ranking, and semisupervised ranking. His presentation is completed by several examples that apply these technologies to solve real information retrieval problems, and by theoretical discussions on guarantees for ranking performance. This book is written for researchers and graduate students in both information retrieval and machine learning. They will find here the only comprehensive description of the state of the art in a field that has driven the recent advances in search engine development.
Learning to Rank for Information Retrieval by Tie-Yan Liu is 282 pages long, and a total of 71,064 words.
This makes it 95% the length of the average book. It also has 87% more words than the average book.
The average oral reading speed is 183 words per minute. This means it takes 6 hours and 28 minutes to read Learning to Rank for Information Retrieval aloud.
Learning to Rank for Information Retrieval is suitable for students ages 12 and up.
Note that there may be other factors that effect this rating besides length that are not factored in on this page. This may include things like complex language or sensitive topics not suitable for students of certain ages.
When deciding what to show young students always use your best judgement and consult a professional.
Learning to Rank for Information Retrieval by Tie-Yan Liu is sold by several retailers and bookshops. However, Read Time works with Amazon to provide an easier way to purchase books.
To buy Learning to Rank for Information Retrieval by Tie-Yan Liu on Amazon click the button below.
Buy Learning to Rank for Information Retrieval on Amazon