It takes the average reader 5 hours and 40 minutes to read Mathematical Logic in Asia by S. S. Goncharov
Assuming a reading speed of 250 words per minute. Learn more
This volume is devoted to the main areas of mathematical logic and applications to computer science. There are articles on weakly o-minimal theories, algorithmic complexity of relations, models within the computable model theory, hierarchies of randomness tests, computable numberings, and complexity problems of minimal unsatisfiable formulas. The problems of characterization of the deduction-detachment theorem, o 1 -induction, completeness of Leoniewski''s systems, and reduction calculus for the satisfiability problem are also discussed. The coverage includes the answer to Kanovei''s question about the upper bound for the complexity of equivalence relations by convergence at infinity for continuous functions. The volume also gives some applications to computer science such as solving the problems of inductive interference of languages from the full collection of positive examples and some negative data, the effects of random negative data, methods of formal specification and verification on the basis of model theory and multiple-valued logics, interval fuzzy algebraic systems, the problems of information exchange among agents on the base topological structures, and the predictions provided by inductive theories. Sample Chapter(s). Chapter 1: Another Characterization of the Deduction-Detachment Theorem (535 KB). Contents: Another Characterization of the Deduction-Detachment Theorem (S V Babyonyshev); On Behavior of 2-Formulas in Weakly o-Minimal Theories (B S Baizhanov & B Sh Kulpeshov); Arithmetic Turing Degrees and Categorical Theories of Computable Models (E Fokina); Negative Data in Learning Languages (S Jain & E Kinber); Effective Cardinals in the Nonstandard Universe (V Kanovei & M Reeken); Model-Theoretic Methods of Analysis of Computer Arithmetic (S P Kovalyov); The Functional Completeness of Leoniewski''s Systems (F Lepage); Hierarchies of Randomness Tests (J Reimann & F Stephan); Intransitive Linear Temporal Logic Based on Integer Numbers, Decidability, Admissible Logical Consecutions (V V Rybakov); The Logic of Prediction (E Vityaev); Conceptual Semantic Systems Theory and Applications (K E Wolff); Complexity Results on Minimal Unsatisfiable Formulas (X Zhao); and other papers. Readership: Researchers in mathematical logic and algebra, computer scientists in artificial intelligence and fuzzy logic."
Mathematical Logic in Asia by S. S. Goncharov is 329 pages long, and a total of 85,211 words.
This makes it 111% the length of the average book. It also has 104% more words than the average book.
The average oral reading speed is 183 words per minute. This means it takes 7 hours and 45 minutes to read Mathematical Logic in Asia aloud.
Mathematical Logic in Asia is suitable for students ages 12 and up.
Note that there may be other factors that effect this rating besides length that are not factored in on this page. This may include things like complex language or sensitive topics not suitable for students of certain ages.
When deciding what to show young students always use your best judgement and consult a professional.
Mathematical Logic in Asia by S. S. Goncharov is sold by several retailers and bookshops. However, Read Time works with Amazon to provide an easier way to purchase books.
To buy Mathematical Logic in Asia by S. S. Goncharov on Amazon click the button below.
Buy Mathematical Logic in Asia on Amazon