It takes the average reader 9 hours and 16 minutes to read Modern Time Series Forecasting with Python by Manu Joseph
Assuming a reading speed of 250 words per minute. Learn more
Build real-world time series forecasting systems which scale to millions of time series by applying modern machine learning and deep learning concepts Key FeaturesExplore industry-tested machine learning techniques used to forecast millions of time seriesGet started with the revolutionary paradigm of global forecasting modelsGet to grips with new concepts by applying them to real-world datasets of energy forecastingBook Description We live in a serendipitous era where the explosion in the quantum of data collected and a renewed interest in data-driven techniques such as machine learning (ML), has changed the landscape of analytics, and with it, time series forecasting. This book, filled with industry-tested tips and tricks, takes you beyond commonly used classical statistical methods such as ARIMA and introduces to you the latest techniques from the world of ML. This is a comprehensive guide to analyzing, visualizing, and creating state-of-the-art forecasting systems, complete with common topics such as ML and deep learning (DL) as well as rarely touched-upon topics such as global forecasting models, cross-validation strategies, and forecast metrics. You'll begin by exploring the basics of data handling, data visualization, and classical statistical methods before moving on to ML and DL models for time series forecasting. This book takes you on a hands-on journey in which you'll develop state-of-the-art ML (linear regression to gradient-boosted trees) and DL (feed-forward neural networks, LSTMs, and transformers) models on a real-world dataset along with exploring practical topics such as interpretability. By the end of this book, you'll be able to build world-class time series forecasting systems and tackle problems in the real world. What you will learnFind out how to manipulate and visualize time series data like a proSet strong baselines with popular models such as ARIMADiscover how time series forecasting can be cast as regressionEngineer features for machine learning models for forecastingExplore the exciting world of ensembling and stacking modelsGet to grips with the global forecasting paradigmUnderstand and apply state-of-the-art DL models such as N-BEATS and AutoformerExplore multi-step forecasting and cross-validation strategiesWho this book is for The book is for data scientists, data analysts, machine learning engineers, and Python developers who want to build industry-ready time series models. Since the book explains most concepts from the ground up, basic proficiency in Python is all you need. Prior understanding of machine learning or forecasting will help speed up your learning. For experienced machine learning and forecasting practitioners, this book has a lot to offer in terms of advanced techniques and traversing the latest research frontiers in time series forecasting.
Modern Time Series Forecasting with Python by Manu Joseph is 552 pages long, and a total of 139,104 words.
This makes it 186% the length of the average book. It also has 170% more words than the average book.
The average oral reading speed is 183 words per minute. This means it takes 12 hours and 40 minutes to read Modern Time Series Forecasting with Python aloud.
Modern Time Series Forecasting with Python is suitable for students ages 12 and up.
Note that there may be other factors that effect this rating besides length that are not factored in on this page. This may include things like complex language or sensitive topics not suitable for students of certain ages.
When deciding what to show young students always use your best judgement and consult a professional.
Modern Time Series Forecasting with Python by Manu Joseph is sold by several retailers and bookshops. However, Read Time works with Amazon to provide an easier way to purchase books.
To buy Modern Time Series Forecasting with Python by Manu Joseph on Amazon click the button below.
Buy Modern Time Series Forecasting with Python on Amazon