It takes the average reader 9 hours and 32 minutes to read Self-Adjoint Extension Schemes and Modern Applications to Quantum Hamiltonians by Matteo Gallone
Assuming a reading speed of 250 words per minute. Learn more
This book introduces and discusses the self-adjoint extension problem for symmetric operators on Hilbert space. It presents the classical von Neumann and Krein–Vishik–Birman extension schemes both in their modern form and from a historical perspective, and provides a detailed analysis of a range of applications beyond the standard pedagogical examples (the latter are indexed in a final appendix for the reader’s convenience). Self-adjointness of operators on Hilbert space representing quantum observables, in particular quantum Hamiltonians, is required to ensure real-valued energy levels, unitary evolution and, more generally, a self-consistent theory. Physical heuristics often produce candidate Hamiltonians that are only symmetric: their extension to suitably larger domains of self-adjointness, when possible, amounts to declaring additional physical states the operator must act on in order to have a consistent physics, and distinct self-adjoint extensions describe different physics. Realising observables self-adjointly is the first fundamental problem of quantum-mechanical modelling. The discussed applications concern models of topical relevance in modern mathematical physics currently receiving new or renewed interest, in particular from the point of view of classifying self-adjoint realisations of certain Hamiltonians and studying their spectral and scattering properties. The analysis also addresses intermediate technical questions such as characterising the corresponding operator closures and adjoints. Applications include hydrogenoid Hamiltonians, Dirac–Coulomb Hamiltonians, models of geometric quantum confinement and transmission on degenerate Riemannian manifolds of Grushin type, and models of few-body quantum particles with zero-range interaction. Graduate students and non-expert readers will benefit from a preliminary mathematical chapter collecting all the necessary pre-requisites on symmetric and self-adjoint operators on Hilbert space (including the spectral theorem), and from a further appendix presenting the emergence from physical principles of the requirement of self-adjointness for observables in quantum mechanics.
Self-Adjoint Extension Schemes and Modern Applications to Quantum Hamiltonians by Matteo Gallone is 557 pages long, and a total of 143,149 words.
This makes it 188% the length of the average book. It also has 175% more words than the average book.
The average oral reading speed is 183 words per minute. This means it takes 13 hours and 2 minutes to read Self-Adjoint Extension Schemes and Modern Applications to Quantum Hamiltonians aloud.
Self-Adjoint Extension Schemes and Modern Applications to Quantum Hamiltonians is suitable for students ages 12 and up.
Note that there may be other factors that effect this rating besides length that are not factored in on this page. This may include things like complex language or sensitive topics not suitable for students of certain ages.
When deciding what to show young students always use your best judgement and consult a professional.
Self-Adjoint Extension Schemes and Modern Applications to Quantum Hamiltonians by Matteo Gallone is sold by several retailers and bookshops. However, Read Time works with Amazon to provide an easier way to purchase books.
To buy Self-Adjoint Extension Schemes and Modern Applications to Quantum Hamiltonians by Matteo Gallone on Amazon click the button below.
Buy Self-Adjoint Extension Schemes and Modern Applications to Quantum Hamiltonians on Amazon