It takes the average reader 5 hours and 41 minutes to read Simplifying Data Engineering and Analytics with Delta by Anindita Mahapatra
Assuming a reading speed of 250 words per minute. Learn more
Explore how Delta brings reliability, performance, and governance to your data lake and all the AI and BI use cases built on top of it Key Features • Learn Delta’s core concepts and features as well as what makes it a perfect match for data engineering and analysis • Solve business challenges of different industry verticals using a scenario-based approach • Make optimal choices by understanding the various tradeoffs provided by Delta Book Description Delta helps you generate reliable insights at scale and simplifies architecture around data pipelines, allowing you to focus primarily on refining the use cases being worked on. This is especially important when you consider that existing architecture is frequently reused for new use cases. In this book, you'll learn about the principles of distributed computing, data modeling techniques, and big data design patterns and templates that help solve end-to-end data flow problems for common scenarios and are reusable across use cases and industry verticals. You'll also learn how to recover from errors and the best practices around handling structured, semi-structured, and unstructured data using Delta. After that, you'll get to grips with features such as ACID transactions on big data, disciplined schema evolution, time travel to help rewind a dataset to a different time or version, and unified batch and streaming capabilities that will help you build agile and robust data products. By the end of this Delta book, you'll be able to use Delta as the foundational block for creating analytics-ready data that fuels all AI/BI use cases. What you will learn • Explore the key challenges of traditional data lakes • Appreciate the unique features of Delta that come out of the box • Address reliability, performance, and governance concerns using Delta • Analyze the open data format for an extensible and pluggable architecture • Handle multiple use cases to support BI, AI, streaming, and data discovery • Discover how common data and machine learning design patterns are executed on Delta • Build and deploy data and machine learning pipelines at scale using Delta Who this book is for Data engineers, data scientists, ML practitioners, BI analysts, or anyone in the data domain working with big data will be able to put their knowledge to work with this practical guide to executing pipelines and supporting diverse use cases using the Delta protocol. Basic knowledge of SQL, Python programming, and Spark is required to get the most out of this book.
Simplifying Data Engineering and Analytics with Delta by Anindita Mahapatra is 335 pages long, and a total of 85,425 words.
This makes it 113% the length of the average book. It also has 104% more words than the average book.
The average oral reading speed is 183 words per minute. This means it takes 7 hours and 46 minutes to read Simplifying Data Engineering and Analytics with Delta aloud.
Simplifying Data Engineering and Analytics with Delta is suitable for students ages 12 and up.
Note that there may be other factors that effect this rating besides length that are not factored in on this page. This may include things like complex language or sensitive topics not suitable for students of certain ages.
When deciding what to show young students always use your best judgement and consult a professional.
Simplifying Data Engineering and Analytics with Delta by Anindita Mahapatra is sold by several retailers and bookshops. However, Read Time works with Amazon to provide an easier way to purchase books.
To buy Simplifying Data Engineering and Analytics with Delta by Anindita Mahapatra on Amazon click the button below.
Buy Simplifying Data Engineering and Analytics with Delta on Amazon