It takes the average reader 6 hours and 30 minutes to read Tensor Analysis with Applications in Mechanics by L. P. Lebedev
Assuming a reading speed of 250 words per minute. Learn more
The tensorial nature of a quantity permits us to formulate transformation rules for its components under a change of basis. These rules are relatively simple and easily grasped by any engineering student familiar with matrix operators in linear algebra. More complex problems arise when one considers the tensor fields that describe continuum bodies. In this case general curvilinear coordinates become necessary. The principal basis of a curvilinear system is constructed as a set of vectors tangent to the coordinate lines. Another basis, called the dual basis, is also constructed in a special manner. The existence of these two bases is responsible for the mysterious covariant and contravariant terminology encountered in tensor discussions. A tensor field is a tensor-valued function of position in space. The use of tensor fields allows us to present physical laws in a clear, compact form. A byproduct is a set of simple and clear rules for the representation of vector differential operators such as gradient, divergence, and Laplacian in curvilinear coordinate systems. This book is a clear, concise, and self-contained treatment of tensors, tensor fields, and their applications. The book contains practically all the material on tensors needed for applications. It shows how this material is applied in mechanics, covering the foundations of the linear theories of elasticity and elastic shells. The main results are all presented in the first four chapters. The remainder of the book shows how one can apply these results to differential geometry and the study of various types of objects in continuum mechanics such as elastic bodies, plates, and shells. Each chapter of this new edition is supplied with exercises and problems most with solutions, hints, or answers to help the reader progress. An extended appendix serves as a handbook-style summary of all important formulas contained in the book.
Tensor Analysis with Applications in Mechanics by L. P. Lebedev is 378 pages long, and a total of 97,524 words.
This makes it 128% the length of the average book. It also has 119% more words than the average book.
The average oral reading speed is 183 words per minute. This means it takes 8 hours and 52 minutes to read Tensor Analysis with Applications in Mechanics aloud.
Tensor Analysis with Applications in Mechanics is suitable for students ages 12 and up.
Note that there may be other factors that effect this rating besides length that are not factored in on this page. This may include things like complex language or sensitive topics not suitable for students of certain ages.
When deciding what to show young students always use your best judgement and consult a professional.
Tensor Analysis with Applications in Mechanics by L. P. Lebedev is sold by several retailers and bookshops. However, Read Time works with Amazon to provide an easier way to purchase books.
To buy Tensor Analysis with Applications in Mechanics by L. P. Lebedev on Amazon click the button below.
Buy Tensor Analysis with Applications in Mechanics on Amazon