It takes the average reader 6 hours and 7 minutes to read Understanding and Implementing the Finite Element Method by Mark S. Gockenbach
Assuming a reading speed of 250 words per minute. Learn more
The ?nite element method is the most powerful general-purpose technique for computĀing accurate solutions to partial differential equations. Understanding and Implementing the Finite Element Method is essential reading for those interested in understanding both the theory and the implementation of the ?nite element method for equilibrium problems. This book contains a thorough derivation of the finite element equations as well as sections on programming the necessary calculations, solving the finite element equations, and using a posteriori error estimates to produce validated solutions. Accessible introductions to advanced topics, such as multigrid solvers, the hierarchical basis conjugate gradient method, and adaptive mesh generation, are provided. Each chapter ends with exercises to help readers master these topics. Understanding and Implementing the Finite Element Method includes a carefully documented collection of MATLABĀ® programs implementing the ideas presented in the book. Readers will bene?t from a careful explanation of data structures and speci?c coding strategies and will learn how to write a ?nite element code from scratch. Students can use the MATLAB codes to experiment with the method and extend them in various ways to learn more about programming ?nite elements. This practical book should provide an excellent foundation for those who wish to delve into advanced texts on the subject, including advanced undergraduates and beginning graduate students in mathematics, engineering, and the physical sciences.Preface; Part I: The Basic Framework for Stationary Problems. Chapter 1: Some Model PDEs; Chapter 2: The weak form of a BVP; Chapter 3: The Galerkin method; Chapter 4: Piecewise polynomials and the finite element method; Chapter 5: Convergence of the finite element method; Part II Data Structures and Implementation. Chapter 6: The mesh data structure; Chapter 7: Programming the finite element method: Linear Lagrange triangles; Chapter 8: Lagrange triangles of arbitrary degree; Chapter 9: The finite element method for general BVPs; Part III: Solving the Finite Element Equations. Chapter 10: Direct solution of sparse linear systems; Chapter 11: Iterative methods: Conjugate gradients; Chapter 12: The classical stationary iterations; Chapter 13: The multigrid method; Part IV: Adaptive Methods. Chapter 14: Adaptive mesh generation; Chapter 15: Error estimators and indicators; Bibliography; Index.
Understanding and Implementing the Finite Element Method by Mark S. Gockenbach is 363 pages long, and a total of 91,839 words.
This makes it 123% the length of the average book. It also has 112% more words than the average book.
The average oral reading speed is 183 words per minute. This means it takes 8 hours and 21 minutes to read Understanding and Implementing the Finite Element Method aloud.
Understanding and Implementing the Finite Element Method is suitable for students ages 12 and up.
Note that there may be other factors that effect this rating besides length that are not factored in on this page. This may include things like complex language or sensitive topics not suitable for students of certain ages.
When deciding what to show young students always use your best judgement and consult a professional.
Understanding and Implementing the Finite Element Method by Mark S. Gockenbach is sold by several retailers and bookshops. However, Read Time works with Amazon to provide an easier way to purchase books.
To buy Understanding and Implementing the Finite Element Method by Mark S. Gockenbach on Amazon click the button below.
Buy Understanding and Implementing the Finite Element Method on Amazon